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Resonances, Unstable Systems, and Irreversibility:
Matter Meets Mind

Robert C. Bishop1,2

The fundamental time-reversal invariance of dynamical systems can be broken in vari-
ous ways. One way is based on the presence of resonances and their interactions giving
rise to unstable dynamical systems leading to well-defined time arrows. Associated with
these time arrows are semigroups bearing time orientations. Usually, when time sym-
metry is broken, two time-oriented semigroups result, one directed toward the future
and one directed toward the past. If time-reversed states and evolutions are excluded
due to resonances, then the status of these states and their associated backwards-in-time
oriented semigroups is open to question. One possible role for these latter states and
semigroups is as an abstract representation of mental systems as opposed to material
systems. The beginnings of this interpretation will be sketched.

KEY WORDS: rigged Hilbert space quantum mechanics; irreversibility; mind–matter
relations.

1. INTRODUCTION

Usually dynamical systems are considered to be time-reversible as their
equations of motion are time-reversal symmetric under the time inversion operator
R : (�x, t) → (�x,−t). This means that if φ(t) is a solution of the equations of
motion, then so is Rφ(t). Such systems should then be reversible in the sense that
if they exhibit a temporal succession of state transitions φ1, φ2, φ3, . . . , φn, they
can also exhibit the reverse temporal sequence Rφn, Rφn−1, Rφn−2, . . . , Rφ1.
In quantum mechanics these evolutions typically are described by one-parameter
unitary groups of operators.

Resonances appear in a number of dynamical systems, both classical and
quantum (e.g., Antoniou and Prigogine, 1993; Antoniou and Tasaki, 1993; Bohm
et al., 1997) and are prototypical irreversible processes (e.g., scattering reso-
nances). When the number of resonances in dynamical systems is sufficiently
large, the dynamics is extremely unstable (e.g., exhibiting sensitive dependence
on initial conditions), and becomes irreversible. For such unstable system time
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arrows for the dynamics can be clearly defined (e.g., Bishop, 2004a,b, 2005a). In
the rigged Hilbert space framework for quantum mechanics (e.g., Bohm et al.,
1997; Bohm and Gadella, 1989), such time arrows are represented by semigroups.
It is typically the case that there are two possible semigroups for such dynamics,
one defined in the forward direction in time and one defined in the backward
direction. However, if the evolutions of such resonance phenomena as scattering
resonances and quasistable particles are irreversible, then there appears to be no
physical relevance to the mathematical descriptions of the time-reversed states and
evolutions.

After presenting the background of the rigged Hilbert space (RHS) frame-
work for quantum mechanics (QM) in Section 2, I will review its application
to resonance states for scattering (Section 3). This will be followed by a brief
review of the extended Galilean group of Wigner and its application to resonance
states in the RHS framework (Section 4). I will then give an interpretation of the
time-reversed resonance states and evolutions as abstract representations of mental
systems as opposed to material systems (Section 5).

2. RIGGED HILBERT SPACE QUANTUM MECHANICS

An RHS may be briefly characterized as follows. Let � be an abstract linear
scalar product space and complete � with respect to two topologies. The first
topology is the standard Hilbert space (HS) topology τH defined by the norm

‖h‖ =
√

(h, h) (1)

where h is an element of �. The second topology τ� is defined by a countable set
of norms

‖φ‖n =
√

(φ, φ)n, n = 0, 1, 2, . . . (2)

where φ is also an element of � and the scalar product in (2) is given by

(φ, φ′)n = (φ, (� + 1)nφ′), n = 0, 1, 2, . . . (3)

where � is the Nelson operator � = ∑
i χ

2
i . The χi are the generators of an

enveloping algebra of observables for the system in question and they form a basis
for a Lie algebra (Bohm et al., 1999; Nelson, 1959). In the case of the harmonic
oscillator, for example, the χi would be the position and momentum operators
or, alternatively, the raising and lowering operators. Furthermore if the operator
� + 1 is nuclear then the space � defined by (2) is a nuclear space (Treves, 1967).

A Gel’fand triplet is obtained by completing � with respect to τ� to obtain
� and with respect to τH to obtain H. In addition there are the dual spaces
of continuous linear functionals �× and H×, respectively. Since H is self-dual,
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we obtain

� ⊂ H ⊂ �×. (4)

The Nelson operator fully determines the space �. However, there are many
inequivalent irreducible representations of an enveloping algebra of a group char-
acterizing a physical system (e.g., Bohm et al., 1999). Therefore, further restric-
tions may be required to obtain a realization for �, e.g., due to the convergence
properties desired for test functions in �. In general, one chooses the weakest
topology such that the algebra of operators for the physical problem is continuous
and � is nuclear. The physical symmetries of the system play an important role in
such choices (Bohm et al., 1999).

In RHS QM, the observables form an algebra on the entire space of physical
states (including �×, where Dirac kets reside), so a RHS contains observables
with continuous or even complex eigenvalues, whereas a HS does not. This means
that the basis vector expansion of eigenvectors (Dirac’s spectral decomposition)
can be given a rigorous foundation resulting in the nuclear spectral theorem:

|φ〉 =
∑

n

|En)(En|ϕ) +
∫

|E〉〈E|ϕ 〉dµ(E). (5)

Here the rounded bras and kets denote elements of H and the summation in (5)
represents the discrete part of the spectrum. The angular bras, 〈ϕ|, denote elements
defined in �, while the angular kets, |E〉, denote elements defined in �×; hence,
the integral in (5) represents the continuous part of the spectrum.

3. STATES, OBSERVABLES, AND RESONANCES IN SCATTERING

A typical scattering experiment consists of an accelerator, which prepares
a projectile in a particular state, a target, and detectors. The total Hamiltonian
modeling the interaction of the particle with the target is, therefore, H = Ho +
V , where Ho represents the free particle Hamiltonian and V the potential in
the interaction region. The vectors representing growing and decaying states are
associated with the resonance poles of the analytically continued S-matrix (Lax
and Phillips, 1967).

Following the Bohm group, a time arrow emerges in scattering resonances
through imposing the preparation/registration arrow of time (Bishop, 2004b;
Bohm et al., 1994). The key intuition behind this arrow is that no observable
properties of a state can be measured unless the state has first been prepared.
Following Ludwig (1983, 1985), an in-state of a particular quantum system (con-
sidered as an ensemble of individual systems such as elementary particles) is
prepared by a preparation apparatus (considered macrophysical). The detector
(considered macrophysical) registers so-called out-states of postinteraction par-
ticles. In-states are taken to be elements φ ∈ �− and observables are taken to
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be elements ψ ∈ �+. (Resonance states, such as the Dirac, Lippman, Schwinger
kets, and Gamow vectors, are elements of �×

±). This leads to a distinction between
prepared states, on the one hand, and observables, each described by a separate
RHS (Bohm et al., 1997; Bohm and Gadella, 1989):

�− ⊂ H ⊂ �×
− (6a)

�+ ⊂ H ⊂ �×
+, (6b)

where �− is the Hardy space of the lower complex energy half-plane intersected
with the Schwartz class functions and �+ is the Hardy space of the upper complex
energy half-plane intersected with the Schwartz class functions. As Bohm and
Gadella (1989) demonstrate, some elements of the generalized eigenstates in �×

−
and �×

+ correspond to exponentially growing and decaying states, respectively.
The semigroups governing these states are3

〈φ|U×|Z∗
R〉 = e−iERt e

	
2 t 〈φ|Z∗

R〉t ≤ 0, t : −∞ → 0 (7a)

〈ψ |U×|ZR〉 = e−iERt e− 	
2 t 〈ψ |ZR〉t ≥ 0, t : 0 → ∞, (7b)

where ER represents the total resonance energy, 	 represents the resonance width,
ZR represents the pole at ER − i 	

2 , Z∗
R represents the pole at ER + i 	

2 , |Z∗
R〉 ∈ �×

−
represents a growing Gamow vector, and |ZR〉 ∈ �×

+ represents a decaying Gamow
vector. The t < 0 semigroup is identified as future-directed along with |Z∗

R〉 as a
forming/growing state. The t > 0 semigroup is identified as future-directed along
with |ZR〉 as a decaying state.

4. TIME-REVERSED STATES AND OBSERVABLES

Following Wigner (1964), the time-reversal operator, R(t), is the HS repre-
sentation of the physical spacetime transformation

R : (�x, t) → (�x,−t). (8)

Therefore, R is an element of a corepresentation of the extended Galilei symmetry
group (Cariñena and Santander, 1981) for a nonrelativistic spacetime (extended
Poincaré group for a relativistic spacetime). These representations must be unitary
and linear except for R, which is antilinear.

Wigner originally derived the properties of R for the spacetime symmetry
group extended by time inversions and studied the parity inversion operator 
 and

3 If U (t) is a unitary operator on H and � ⊂ H ⊂ �×, then U† can be extended to �× provided that
(1) U leaves � invariant and (2) U is continuous on � with respect to the topology τ�. The operator
U× denotes the extension of the HS operator U† to �× and is defined by 〈Uφ|F 〉 = 〈φ|U×F 〉 for all
φ ∈ � and F ∈ �×. When the group operator U† is extended to �×, continuity requirements force
the operators U× to be semigroups defined only on the temporal half-domains (Bohm and Gadella,
1989).
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Table I. Properties of the Galilei Spacetime Symmetry Group

εR εT 
 R T

(−1)2j (−1)2j 1 C C

(−1)2j (−1)2j

(
1 0
0 −1

) (
0 C

−C 0

) (
0 C

C 0

)

(−1)2j (−1)2j

(
1 0
0 −1

) (
0 C

C 0

) (
0 C

−C 0

)

(−1)2j (−1)2j

(
1 0
0 1

) (
0 C

−C 0

) (
0 C

−C 0

)

the total inversion operator T in combination with R (Wigner, 1964). The parity
inversion operator is unitary so its phase can be chosen such that 
2 = I (the
identity operator), while T and R are both antiunitary, so that the associative law for
group multiplication then dictates that R2 = εRI and T 2 = εT I , where εR = ±1
and εT = ±1. The phase of T can be chosen so that T = 
R (where the order
of application of 
 and R is physically immaterial). The extension of the Galilei
spacetime symmetry group is summarized in Table I.

The index j refers to the spin of the particle being considered while C is an op-
erator whose (2j + 1)-dimensional matrix has the elements cµ,ν = (−1)j+µδµ,ν ,
where −j ≤ µ and ν ≤ j . In the first representation, where εR = εT = (−1)2j ,
there are no changes to the underlying vector space. This is the typical case
discussed in QM (and relativistic quantum field theory). The other three represen-
tations, however, exhibit a doubling of the vector spaces (note the block matrices
in the last three columns of Table I). In order to track this space doubling, let the
index r = 0, 1 label the rows and columns of the matrices in Table I.

Although no quantum fields have been constructed for representations two
and three of Table I (indeed they are highly problematic), Bohm and coworkers
have constructed models for the fourth representation by applying R to the states
and observables in (7) (Bohm, 1995; Bohm and Wickramasekara, 1997). First,
consider the growing Gamow vectors for, φr=0,× ∈ �

r=0,×
− . Applying R yields

Rφr=0,× = ψr=1,× ∈ �
r=1,×
+ . (9)

Similarly for the decaying Gamow vectors, ψr=0,× ∈ �
r=0,×
+ , applying R yields

Rψr=0,× = φr=1,× ∈ �
r=1,×
− . (10)

The transformation properties of R may be summarized as R : �
r=0,×
± → �

r=1,×
∓ .

The temporal evolution of these time-reversed vectors is also given by semi-
groups. Identify r = 0 with the scattering experiment as normally carried out in the
laboratory and r = 1 with the extended spacetime transformed situation (“time-
reversed counterparts”). Then U×(t)〈φ, r = 0|Z∗

R, r = 0〉 ∈ �
r=0,×
− , a growing
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Gamow vector representing a preparable state for t ≤ 0, is transformed under R

into U×(−t)〈ψ, r = 1|ZR, r = 1〉 ∈ �
r=1,×
+ , where

eiERt e− 	
2 t 〈ψ, r = 1|ZR, r = 1〉 (11)

is restricted to the time domain t ≥ 0 by continuity requirements. In the case
of |Z∗

R, r = 0〉, time counts up from −∞ to 0; in contrast, for |ZR, r = 1〉, time
counts down from ∞ to 0, meaning that it represents a Gamow vector that in-
creases as t decreases. Similarly, U×(t)〈ψ, r = 0|ZR, r = 0〉 ∈ �

r=0,×
+ , a decay-

ing Gamow vector representing observables for t ≥ 0, is transformed under R into
U×(−t)〈φ, r = 1|Z∗

R, r = 1〉 ∈ �
r=1,×
− , where

eiERt e
	
2 t 〈φ, r = 1|Z∗

R, r = 1〉 (12)

is restricted to the time domain t ≤ 0 by continuity requirements. In the case of
|ZR, r = 0〉, time counts up from 0 to ∞; in contrast, for |Z∗

R, r = 1〉, time counts
down from 0 to −∞, meaning that it represents a Gamow vector that decays as
−t increases.

5. MATTER MEETS MIND

Comparing Eqs. (7) with (11) and (12), we can see that in the r = 0 regime
the association of prepared states with growing eigenvectors and of detected ob-
servables with decaying eigenvectors is quite natural. On the other hand, the r = 1
regime has no natural association with physical phenomena (to apply the eigen-
states in this regime “straightforwardly” within our framework would lead to iden-
tifying the growing eigenvectors with “prepared observables” and the decaying
eigenvectors with “detected states,” counterintuitive to say the least).4

Suppose we consider an alternative interpretation of the states and observ-
ables of the r = 1 regime as an abstract representation of mental rather than
material systems. The semigroups in this regime carry vectors from the future
to the past. This could be taken as an abstract representation of final causation,
appropriate to teleological or goal-directed behavior. For example, suppose I have
a particular vision of the kind of person I want to become, say a more humble per-
son; or suppose I have a particular goal I want to achieve, say landing a top-flight
permanent academic position. These would be examples of final causation at work
in everyday decisions and actions.5 Drawing on the analogy with final causation

4 The question of interpreting the time-reversed states and observables was first suggested to me as an
interesting problem by Arno Bohm.

5 It would be interesting, though difficult, to connect the framework proposed here with analyses
of goal-directed behavior in cognitive psychology, and cognitive science more broadly, as the latter
perspectives tend to transmute the apparent final-causal nature of everyday goal-directed behavior into
mechanisms of efficient causation (e.g. Bishop, 2005b). Hence, establishing the desired connection
is not straightforward without at least extending the current cognitive paradigms.
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as a backwards-directed influence, an eigenvector growing in the backwards time
direction might represent the formation (“preparation” or “excitation”) of such
a goal or vision of the future. This could be taken as representing the building
influence of the goal or vision of the future on the present decision. Similarly, an
eigenvector decaying in the backwards time direction might represent the decision
state (“registration” or “de-excitation”) resulting in concrete action toward the
goal. It is plausible that decision states decay back to some kind of “ready state”
after action is initiated so that a new decision state can be created for the next set
of goals and actions. The rate of decay could be slower or faster depending on
whether the intended action required more effort of will to “stay on track” as it
were to completion or not. The resonance state might be taken as a representation
of the decision itself.

The r = 1 regime could, then, serve as an abstract model of goal-directed
decision and action. Moreover, both regimes together would play a role in the
abstract description of mental and material systems and their relations. The r = 0
regime would correspond to material systems while the r = 1 regime would
correspond to mental systems. We would, then, have a unified abstract description
of mental–material systems.

Such an abstract description could be deployed to represent a “dualistic”
distinction between material and mental domains, emerging from a “monistic”
domain without such a distinction. It has been proposed that this emergence is
related to some temporal symmetry breaking (Atmanspacher, 2003; Primas, 2004)
in the spirit of ideas of Pauli and Jung (Pauli and Enz, 2001), where physical and
psychical aspects originate in a psychophysically neutral domain. The symmetry
breaking envisaged need not be a unique, one-time event, but is perhaps best
understood as an ongoing process due to a number of contingent conditions giving
rise to the mental–material distinction.6 Furthermore, this symmetry breaking can
lead to the Cartesian distinction of the dualistic approach while still allowing for
correlations or forms of interaction emerging from the neutral domain, perhaps
leading to resolution of a number of problems plaguing the dualistic approach.

To be a bit more precise, suppose the neutral domain is characterized by states
ω and a unitary symmetry (continuum order, automorphic dynamics, etc.). The
dynamics of this domain would then exhibit the time-reversal symmetry described
in Section 1 and might be characterized by a one-parameter unitary group of
bounded operators onH. Some, as yet unspecified, symmetry breaking leads to the
generation of time-asymmetric dynamics characterized by semigroups governing
the two regimes, r = 0, 1. As originally characterized, the states ω are neutral
with respect to mental–material aspects, whereas after the symmetry breaking,
the states are differentiated into material (r = 0) and mental (r = 1) states and

6 The role of contingent conditions in the emergence of properties is discussed in Bishop and
Atmanspacher (2005).
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processes. It is at the level of symmetry breaking that the states and observables
discussed above emerge. The characterization of observables in the unitary domain
is left unaddressed here.7

The fact that the r = 0 and r = 1 regimes are related to each other via
a time-reversal operator suggests the possibility that there is some form of
intertwining relation among the states and observables of the two regimes. If
so, then the relationship among the elements of the mental and material domains
would not be so starkly disjoint as in Descartes’ view, where the two domains are
conceived as distinctly different kinds of substances. Therefore, the distinction
between mental and material domains need not imply Descartes’ metaphysical
distinction nor the kinds of interaction problems encountered in that view.

The RHS framework for QM allows for the description of both time-
symmetric and time-asymmetric phenomena. In particular, it is well-suited for
the description of resonances and other kinds of unstable states. If the interpre-
tation sketched here makes the time-reversed states and observables of the r = 1
regime plausible, then the RHS framework is also well-suited for such an abstract
representation of mental and material states. The unitary neutral domain might
be related to H while the r = 0 (material) and r = 1 (mental) regimes are related
to � and �×.

Although one might wonder about the propriety of using concrete models
to motivate the framework and then subsequently throwing those models to the
side to apply the framework to more abstract questions, this way of proceeding
represents a well-established use of models in mathematical physics (Redhead,
1980). There are also technical questions about the application of Wigner’s ideas
to observables as well as to semigroup representations, but these questions are
fairly straightforward. What is not so straightforward are questions such as the
emergence of time, or the kinds of contingent conditions leading to the symmetry
breaking generating the two regimes. The abstract RHS framework proposed here
appears to be promising as one avenue for exploring such topics.

6. CONCLUDING SUMMARY

One way the fundamental time-reversal invariance of dynamical systems
might be broken is through the presence of resonances and their interactions giv-
ing rise to unstable dynamical systems. When time-reversal invariance is broken,
this results in two well-defined time arrows associated with semigroups bearing
time orientations, one directed toward the future and one directed toward the
past. Scattering resonances provide an example where time-reversal invariance is

7 As a referee helpfully pointed out, one could also consider a more general kind of interpretation of
the r = 1 regime, namely as representing observational systems, where mental systems are a very
important special case. Space does not permit consideration of this interesting possibility.



Resonances, Unstable Systems, and Irreversibility 1887

broken. The resulting forward-directed semigroups and states correspond to the
processes of resonance formation, decay, and detection, but the backward-directed
semigroups and states are thought to have perhaps only mathematical significance.
Here, I have sketched a possible interpretation of these latter semigroups and
states as corresponding abstractly to the domain of mental systems, while the
forward-directed semigroups and states would correspond to the domain of mate-
rial systems. The crucial idea is that these two domains might emerge from a more
fundamental domain that is neutral with respect to any mental–material distinc-
tion and that, hence, various possibilities exist for relations between the emergent
domains that are typically precluded by traditional Cartesian dualisms. The RHS
framework seems well-suited for describing and exploring these possibilities.
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